DOI: 10.1002/ejic.200600614

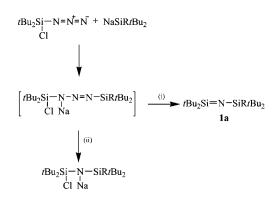
Chemical and Structural Features of NMe₂Et Adducts of the Silanimines Me₂Si=NSitBu₃ and tBu₂Si=NSiCltBu₂

Hans-Wolfram Lerner,*[a] Michael Bolte,[a] Klaus Schurz,[b] Nils Wiberg,[b] Gerhard Baum,[c] Dieter Fenske,[c] Jan W. Bats,[d] and Matthias Wagner[a]

Keywords: Silanimines / Amines / Donor adduct / Wittig reaction / Stevens rearrangement

In contrast to $tBu_2SiN(Li)SiXtBu_2$ (X = Cl, tBu), the silyl amide $Me_2SiClN(Li)SitBu_3$ is unstable towards LiCl elimination, which means that the silanimine donor adduct $Me_2Si=NSitBu_3\cdot NMe_2Et$ can be synthesized in high yield from the reaction of $Me_2SiClN(H)SitBu_3$ with nBuLi in the presence of NMe_2Et . The silanimine adduct $tBu_2Si=NSiCltBu_2\cdot NMe_2Et$, with bulky tBu substituents at the unsaturated Si center, is accessible by treating the donor-free silanimine $tBu_2Si=NSiCltBu_2$ with NMe_2Et . X-ray quality crystals of the silanimine amine adduct $Me_2Si=NSitBu_3\cdot NMe_2Et$ (monoclinic, $P2_1/n$) were grown from pentane at -25 °C. During thermolysis of the adducts

Me $_2$ Si=NSi tBu_3 ·NMe $_2$ Et and tBu_2 Si=NSiCl tBu_2 ·NMe $_2$ Et in NMe $_2$ Et as solvent a Stevens rearrangement takes place to produce EtN(Me)CH $_2$ SiMe $_2$ N(H)Si tBu_3 and EtN(Me)CH $_2$ Me $_2$ SiN(H)Si tBu_3] $_2$, and EtN(Me)CH $_2$ Si tBu_2 N(H)SiCl tBu_2 , respectively. In contrast, the thermolysis of Me $_2$ Si=NSi tBu_3 ·NMe $_2$ Et in vacuo gives the silanimine dimer (Me $_2$ SiNSi tBu_3) $_2$ (monoclinic, $P2_1/n$) in 80 % yield. The benzophenone imine Ph $_2$ C=NSi tBu_3 (triclinic, P1) was obtained from the Wittig-like reaction of Me $_2$ Si=N-Si tBu_3 with Ph $_2$ CO.


(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Introduction

Ab initio calculations have shown that the silanimine $H_2Si=NSiH_3$ possesses an almost linear Si-N-Si skeleton with a short Si=N double bond and a short Si-N single bond. Moreover, these calculations reveal a negative charge of 1.71 on the N center of $H_2Si=NSiH_3$. It is interesting to note that in the solid state the stable, substituted silanimine $tBu_2Si=N-SitBu_3$, which contains bulky tBu groups, features nearly the same Si=NSi skeleton as that calculated for $H_2Si=NSiH_3$. Obviously only electronic effects, namely the difference in electronegativity between Si and N, determine the molecular structure of this type of silanimine (Scheme 1).

Silanimines are highly reactive compounds therefore their syntheses should be carried out under mild conditions. We have found that at low temperature in the weakly polar solvent Bu₂O the reaction of the silyl azide tBu_2SiClN_3 with the silanides tBu_3SiNa and $tBu_2PhSiNa$, respectively, in a

Fax: +49-69-798-29260 E-mail: lerner@chemie.uni-frankfurt.de

Scheme 1. (i) $-N_2$, -NaCl, Bu_2O (R = tBu, Ph); (ii) $-N_2$, thf (R = tBu).

1:1 stoichiometry, leads cleanly to the silanimines $tBu_2Si=NSitBu_3$ [1a(tBu)] and $tBu_2Si=NSitPhtBu_2$ [1a(tBu)]. In contrast, when tBu_2ClSiN_3 is treated with tBu_3SiNa in the polar solvent tetrahydrofuran, the sodium amide $tBu_2Si-ClN(Na)SitBu_3$ is formed rather than the silanimine ta(tBu). As reported earlier, LiCl elimination of silyl amides can also be carried out at higher temperatures in vacuo to give silanimines. As we noted previously, the silanimine $tBu_2Si=NSiCltBu_2$ [1a(Cl)] can be synthesized by a [3+2] cycloreversion reaction. Surprisingly, in the thermolysis of the silatetrazoline 2(Cl) the silanimine 1a(Cl) and the silyl azide tBu_3SiN_3 are produced, as shown in Scheme 2. Signal of the silatetrazoline 2 (Cl) the silanimine 1a(Cl) and the silyl azide tBu_3SiN_3 are produced, as shown in Scheme 2. Signal of the silanimine 2 (Cl) and the silatetrazoline 2 (Cl) the silanimine 1 (Cl) and the silatetrazoline 2 (Cl) the silanimine 1 (Cl) and the silatetrazoline 2 (Cl) the silanimine 1 (Cl) and the silatetrazoline 2 (Cl) the silanimine 2 (Cl) and the silatetrazoline 2 (Cl) the silanimine 2 (Cl) and the silatetrazoline 2 (Cl) the silanimine 3 (Cl) and the silatetrazoline 2 (Cl) the silanimine 3 (Cl) and the silatetrazoline 2 (Cl) the silanimine 3 (Cl) and the silatetrazoline 2 (Cl) the silanimine 3 (Cl) and 3 (C

[[]a] Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany

[[]b] Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13 (Haus D), 81377 München, Germany

[[]c] Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstraße, Geb. Nr. 30.45, 76128 Karlsruhe, Germany

[[]d] Institut f
ür Organische Chemie, Johann Wolfgang Goethe-Universit
ät Frankfurt am Main,
Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany

Scheme 2.

In this paper, the syntheses and thermolysis reactions of the silanamine aminates Me₂Si=NSitBu₃·NMe₂Et and tBu₂Si=NSiCltBu₂·NMe₂Et are described. We also report the crystal structures of the silanimine aminate Me₂Si=NSitBu₃·NMe₂Et, the silanimine dimer (Me₂SiN-SitBu₃)₂, the benzophenone imine Ph₂C=NSitBu₃, and the silylamine tBu₂SiClN(H)SitBu₃.

Results and Discussion

Syntheses

The silyl amides $tBu_2SiClN(Li)SiXtBu_2$ (X = Cl, tBu) can be cleanly prepared from the precursor silylamines $tBu_2SiClN(H)SiXtBu_2$ (X = Cl, tBu) [3(Cl), 3(tBu)] and alkyllithium reagents like MeLi or nBuLi. The NMR spectra of $tBu_2SiClN(Li)SiXtBu_2$ (X = Cl, tBu) reveal that elimination of LiCl does not take place in the presence of thf or Et₂O at ambient or lower temperatures, whereas the silyl amide Me₂SiClN(Li)SitBu₃ eliminates LiCl at low temperature in Et₂O. An important factor influencing LiCl elimination of these silyl amides appears to be the degree of steric crowding around the unsaturated silicon center. In earlier reports we described the synthesis of several donor adducts of the silanimines 1a(tBu) and Me₂Si=NSitBu₃ (1b),^[8,9] and we found that donor adducts of the silanimines **1a**(tBu) and **1b** can be generated by reaction of the silvl amides tBu₂SiClN(Li)SitBu₃ and Me₂SiClN(Li)SitBu₃, respectively, with CF₃SO₃SiMe₃.^[8,9] In this paper we describe a synthesis that does not require CF₃SO₃SiMe₃ by which the silanimine aminate 1b·NMe₂Et can be produced in large amounts. The silanimine amine adduct 1b·NMe₂Et was synthesized from the reaction of Me₂SiClN(H)SitBu₃ with *n*BuLi in the presence of NMe₂Et at -78 °C in Et₂O. X-ray quality crystals of 1b·NMe₂Et (monoclinic, P2₁/n) were grown from a pentane solution at -25 °C (Scheme 3). The adduct of silanimine 1a(Cl) with NMe₂Et, which possesses a bulky tBu substituent at the unsaturated Si center, is accessible by treating the donor-free silanimine 1a(Cl) with NMe₂Et.

$$R_{2}S_{i}-N-SiRtBu_{2}$$

$$Cl$$

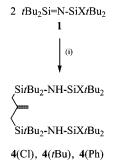
$$R_{2}S_{i}-N-SiXtBu_{2}$$

$$Cl Li$$

$$NMe_{2}Et$$

$$Ib \cdot NMe_{2}Et$$

$$R_{2}S_{i}=N-SiXtBu_{2}$$


$$D$$

$$1a(tBu) \cdot D, 1b \cdot D$$

Scheme 3. (i) +RLi, -RH; (ii) +NMe₂Et, -LiCl (R = Me, X = tBu); (iii) +CF₃SO₃SiMe₃, +D (D = thf, Et₂O, NEt₃), -Me₃SiCl, -CF₃SO₃Li (R = Me, tBu; X = tBu).

Reactivity of Me₂Si=NSitBu₃·NMe₂Et and tBu₂Si=NSiCltBu₂·NMe₂Et

Thermolysis of the donor-free silanimines 1a(Cl), 1a(tBu), and 1a(Ph) in $[D_6]$ benzene at ambient temperature gave the compounds 4(Cl), 4(tBu), and 4(Ph), respectively, as isolable products (Scheme 4). $^{[6,10]}$ The formation of these products can be explained by an ene reaction of isobutene with two molecules of the silanimine. Obviously, the tBu-substituted silanimines 1a(Cl), 1a(tBu), and 1a(Ph) are the source of isobutene at ambient temperature. Thus, these silanimines undergo a β -elimination reaction to form isobutene, which reacts twice with the undegraded silanimines to give the corresponding ene reaction products.

Scheme 4. (i) $+CH_2=C(CH_3)_2$ (X = Cl, tBu, Ph).

In contrast to the degradation reaction of donor-free silanimines 1a(Cl), 1a(tBu), and 1a(Ph), during thermolysis of the silanimine amine adducts $1a(Cl)\cdot NMe_2Et$ and $1b\cdot NMe_2Et$ in dimethylethylamine as solvent a Stevens rearrangement takes place to produce $EtN(Me)CH_2Si-Me_2N(H)SitBu_3$ [5(Me,tBu)] and $EtN(Me)CH[Me_2SiN(H)-SitBu_3]_2$ [6(Me,tBu)], and $EtN(Me)CH_2SitBu_2N(H)-SiCltBu_2$ [5(tBu,Cl)], respectively. A similar reaction was observed in the thermolysis of the pyridine adduct of 1a(Ph).[11] It is interesting to note that the thermolysis reaction of $1b\cdot NMe_2Et$ leads to two products [80% 5(Me,tBu) and 20% 6(Me,tBu) in NMe_2Et ; 10% 5(Me,tBu) and 90%

FULL PAPER

H.-W. Lerner et al.

6(Me,*t*Bu) in [D₆]benzene; Scheme 5]. The thermolysis of **1b·NMe**₂Et in vacuo gives the silanimine dimer (Me₂SiN-Si*t*Bu₃)₂ (**1b₂**) in 80% yield. The silylamines **5**(Me,*t*Bu) and **6**(Me,*t*Bu) were produced as side products in this reaction, as shown in Scheme 5. The silanimine dimer **1b₂** was characterized by X-ray crystallography (see below).

$$R_{2}Si=N-SiXtBu_{2}\cdot NMe_{2}Et \xrightarrow{(i)} R_{2}Si-N-SiXtBu_{2} \\ \downarrow tBu_{2}XSi-N-SiR_{2} \\ \downarrow tBu_{$$

Scheme 5. (i) in vacuo (R = Me, X = tBu); (ii) R = Me, X = tBu; R = tBu, X = Cl; (iii) $+Me_2SiNSitBu_3$ (R = Me, X = tBu).

Generally, the reactivity of the silanimine–NMe₂Et adducts of **1a**(Cl) and **1b** resemble those of the corresponding donor-free silanimines. In earlier reports we discussed the reactivity of the silanimines **1a**(Cl) and **1b** in detail.^[6,8] In contrast to the reaction of **1a**(*t*Bu) with benzophenone, in which a stable silanimine adduct is formed due to steric hindrance,^[12] the silanimine **1b**·NMe₂Et reacts with benzophenone to produce benzophenone imine **8**, via the oxaazasilacyclobutane **7**, by a Wittig-like reaction, as depicted in Scheme 6. The benzophenone imine **8** was obtained in 53% yield. X-ray quality crystals of this compound were obtained by sublimation at 105 °C/0.001 mbar.

Scheme 6.

NMR Spectra

When considering the ²⁹Si NMR spectra of the silanimines of the type R₂Si(1)=NSi(2)R₃ and their donor adducts, certain general trends can be observed. As is to be expected for the unsaturated Si centers of silanimines, the ²⁹Si signals of these nuclei are shifted extremely downfield whereas the silanimine donor adducts show signals for the unsaturated Si center that are shifted upfield, as listed in Table 1. Due to anisotropy effects the signals of both Si atoms of $R_2Si(1)=NSi(2)R_3$ are shifted upfield. The linearity of the silanimine $R_2Si(1)=NSi(2)R_3$ skeleton [Si(1)–N–Si(2) angle] is therefore recognizable by the ²⁹Si NMR shift of the Si(2) center. If a strong donor is coordinated to the silanimine the skeleton deviates more from linearity than if a weak one is bonded. In this case, the signal of the Si(2) center will be shifted further downfield than the Si(2) signal of a weak adduct. Therefore, the strength of a silanimine donor can be measured by the ²⁹Si NMR shift of Si(2) of these adducts. In contrast to **1b**, the silanimines **1a**(Cl) and **1a**(tBu) form weaker adducts with NMe₂Et than with thf. ^[6,9] As shown in Table 1, this trend can also be seen in their ²⁹Si NMR spectra.

Table 1. ²⁹Si NMR shifts (in C_6D_6 if not indicated otherwise) of silanimines $R_2Si(1)=NSi(2)R_3$.

	$\delta^{29} \mathrm{Si}(1)$	δ^{29} Si(2)	Ref.
$\frac{1}{tBu_2Si(1)=NSi(2)tBu_3}$	78.4	-7.7	[2]
$tBu_2Si(1)=NSi(2)PhtBu_2$	81.8	-13.1	[3]
$tBu_2Si(1)=NSi(2)CltBu_2$	3.0	3.0	[6]
$Me_2Si(1)=NSi(2)tBu_3\cdot NMe_2Et$	-8.9	-10.3	_
$tBu_2Si(1)=NSi(2)CltBu_2\cdot NMe_2Et$	-3.4	-6.4	_
$Me_2Si(1)=NSi(2)tBu_3\cdot THF$	-4.4	-11.1	[2]
$tBu_2Si(1)=NSi(2)tBu_3\cdot THF$	1.1	-14.7	[2]
$tBu_2Si(1)=NSi(2)CltBu_2\cdot THF$	2.9	-5.2	[6]
$Me_2Si(1)=NSi(2)tBu_3\cdot Et_2O$	$-1.5^{[a]}$	$-11.1^{[a]}$	[8]
$tBu_2Si(1)=NSi(2)CltBu_2\cdot Et_2O$	$-0.2^{[a]}$	$-6.5^{[a]}$	[6]

[a] Recorded in Et₂O.

It is interesting to note that in contrast to the NMR spectra of the donor-free silanimine 1a(Cl),^[6] which reveal only one signal set for both silyl groups, the NMR spectra of its NMe₂Et complex show signals that can be assigned to two different silyl groups.

Structure of Me₂Si=NSitBu₃·NMe₂Et

Figure 1 shows the molecular structure of the silanimine amine adduct $1b\cdot NMe_2Et$ (monoclinic, $P2_1/n$); selected bond lengths and angles are listed in the figure caption.

As shown in Table 2, the silanimine amine adduct 1b·NMe₂Et has an Si-N-Si angle smaller than 180° and smaller than those in the donor-free silanimines 1a(tBu), and 1a(Ph) and in the corresponding thf adduct 1b.thf $[1a(tBu): Si-N-Si 177.8(2)^{\circ}; 1a(Ph): Si-N-Si 168.34(16)^{\circ}]$ and 172.95(18)°; **1b**·thf: Si-N-Si 161.0(6)° and 161.5(6)°; 1b·NMe₂Et: Si–N–Si 156.44(10)°]. The Si=N double bond in 1b·NMe₂Et [1.6036(13) Å] is somewhat longer than those of the donor-free silanimines 1a(tBu) and 1a(Ph) and the corresponding thf adduct 1b·thf [1a(tBu): Si=N 1.568(3) Å; 1a(Ph): Si=N 1.573(3) Å; $1b \cdot thf$: Si=N 1.574(10) and 1.588(9) Å]. As depicted in Table 2, the N-Si single bonds in the silanimines 1a(tBu), 1a(Ph), and in the silanimines adducts 1b·NMe₂Et and 1b·thf, however, are remarkably shorter than those found in related supersilylated nitrogen compounds [e.g. 1b2, 3(tBu), and 8; Table 3]. Due to the higher Lewis acidity of silanimines in comparison to that of silenes, the distance between the unsaturated Si center

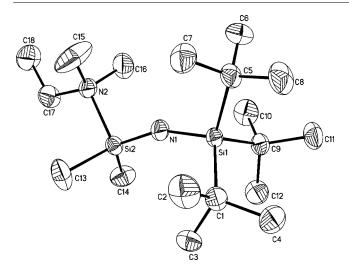


Figure 1. Thermal ellipsoid plot of Me₂Si=NSitBu₃·NMe₂Et (1b·NMe₂Et) showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and angles [°]: Si(1)–N(1) 1.6600(13), Si(1)–C(1) 1.951(2), Si(1)-C(5) 1.954(2), Si(1)-C(9) 1.956(2), N(1)-Si(2) 1.6036(13), Si(2)–C(14) 1.868(2), Si(2)–C(13) 1.868(2), Si(2)–N(2) 1.9694(14); N(1)-Si(1)-C(1) 110.06(7), N(1)-Si(1)-C(5) 107.52 (7), C(1)-Si(1)-C(5) 110.15 (8), N(1)-Si(1)-C(9) 110.05(7), C(1)-Si(1)-C(9) 109.55(8), C(5)-Si(1)-C(9) 109.49(7), Si(2)-N(1)-Si(1)156.44(10), N(1)-Si(2)-C(14) 119.27(10), N(1)-Si(2)-C(13) 119.38 (9), N(1)-Si(2)-N(2) 105.13 (6), C(14)-Si(2)-N(2) 101.73(8), C(13)-Si(2)-N(2) 102.11(10), C(16)-N(2)-Si(2) 107.97(12), C(15)-N(2)-Si(2) 107.4(2), C(17)–N(2)–Si(2) 112.98(11), N(2)–C(17)–C (18) 117.3 (2).

and the amine N atom in 1b·NMe₂Et (1.969 Å) is shorter than that in the adduct Me₂Si=C(SiMe₂Ph)₂·NMe₂Et $(1.988 \text{ Å}).^{[13]}$

Structure of the Silanimine Dimer (Me₂SiNSitBu₃)₂

X-ray quality crystals of the silanimine dimer (Me₂SiN- $SitBu_3$ ₂ (1b₂) were grown from a benzene solution at ambi-

)C61

Figure 2. Thermal ellipsoid plot of the silanimine dimer (Me₂SiN-SitBu₃)₂ (1b₂) showing the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and angles [°]: N(1)-Si(2) 1.764(2), N(1)-Si(3) 1.774(2), N(1)-Si(1) 1.778(2), N(2)-Si(2) 1.761(2), N(2)-Si(1)1.774(2), N(2)–Si(4) 1.775(2), Si(1)–C(8) 1.866(3), Si(1)–C(7) 1.873(3), Si(1)–Si(2) 2.4690(9), Si(2)–C(10) 1.867(3), Si(2)–C(9) 1.868(3), Si(3)–C(3) 1.950(3), Si(3)–C(2) 1.959(3), Si(3)–C(1) 1.961(3), Si(4)-C(4) 1.950(3), Si(4)-C(5) 1.955(3), Si(4)-C(6) 1.956(3); Si(2)-N(1)-Si(3) 133.53(12), Si(2)-N(1)-Si(1) 88.38(9), Si(3)-N(1)-Si(1) 137.98(12), Si(2)-N(2)-Si(1) 88.60(9), Si(2)-N(2)-Si(4) 132.76(12), Si(1)–N(2)–Si(4) 138.42(12), N(2)–Si(1)–N(1) 91.07(9), N(2)-Si(1)-C(8) 115.47(11), N(1)-Si(1)-C(8) 116.19(11), N(2)-Si(1)-C(7) 115.82(11), N(1)-Si(1)-C(7) 116.13(11), C(8)-C(7)Si(1)-C(7) 102.84(13), C(8)-Si(1)-Si(2) 128.81(9), C(7)-Si(1)-Si(2) 128.35(10), N(2)-Si(2)-N(1)91.95(10), N(2)-Si(2)-C(10)113.80(11), N(1)-Si(2)-C(10) 110.43(11), N(2)-Si(2)-C(9)111.06(11), C(10)-Si(2)-C(9)N(1)-Si(2)-C(9)113.78(11), 113.95(13), C(10)-Si(2)-Si(1)122.43(9), C(9)-Si(2)-Si(1)106.58(11), 123.62(10), N(1)-Si(3)-C(2)N(1)-Si(3)-C(3)112.06(10), C(3)-Si(3)-C(2)108.62(11), N(1)-Si(3)-C(1)110.50(10), C(3)-Si(3)-C(1)110.47(11), C(2)-Si(3)-C(1)107.12(10), 108.59(11). N(2)-Si(4)-C(4)N(2)-Si(4)-C(5)110.42(10), C(4)-Si(4)-C(5)110.06(11), N(2)-Si(4)-C(6)111.54(11), 108.80(11), C(5)-Si(4)-C(6) C(4)-Si(4)-C(6)108.88(11).

Table 2. Bond lengths [Å] and angles [°] of silanimines.

	1b·NMe ₂ Et	1b ·thf ^[2]	1a(Ph) ^[11]	1a (<i>t</i> Bu) ^[2]	H ₂ Si=NSiH ₃ ^[1]
Si=N	1.6036(13)	1.588(9)/1.574(10)	1.573(2)/1.573(3)	1.568(3)	1.549 ^[a]
Si-N	1.6600(13)	1.654(9)/1.667(10)	1.695(2)/1.690(3)	1.695(3)	1.688 ^[a]
Si-N-Si	156.44(10)	161.5(5)/161.0(6)	168.34(16)/172.95(18)	177.8(2)	175.6 ^[a]

[a] Calculated.

Table 3. Bond lengths [Å] and angles [°] of supersilylated nitrogen compounds (av. = average value).

	N–SitBu ₃	N-SiR ₂	Si-N-E (E = Si , C, N, M)	$Si-C_{tBu}$ (av.)
(tBu3SiNSiMe2)2 (1b2)	1.775(2) av.	1.769(2) av.	135.67(12) av.	1.955(3)
$tBu_3SiN(H)ClSitBu_2$ [3(tBu)]	1.729(6) av.	1.694(7) av.	160.5(5) av.	1.931(8)
$tBu_3SiN=CPh_2$ (8)	1.721(4) av.	_ ``	154.3(3) av.	1.922(4)
tBu ₂ Si=NSitBu ₃ ·tBuMe ₂ SiN ₃ ^[7]	1.815(2) av.	1.789(2) av.	153.0(3) av.	1.940(3)
$O(tBu_2SiHNSitBu_3)_2^{[14]}$	1.750(1)	1.772(1)	157.13(6)	1.947(3)
$tBu_3SiN(H)SiMesCH_2C_6H_2Me_2^{[15]}$	1.770(8)	1.729(8)	145.5(5)	1.866(12)
tBu ₃ SiNCtBu ⁺ [16]	1.822	_ ``	179.0	1.902
$tBu_3SiN(H)N(H)SitBu_3^{[17]}$	1.760(3)	_	120.6(2)	1.932(3)
$tBu_3SiN(H)N=NSitBu_3^{[18]}$	1.790(8) av.	_	124.9(7) av.	1.95(1)
$tBu_3SiN(SnMe_3)N=NSitBu_3^{[18]}$	1.82(2) av.	_	119.1(15) av.	1.922(4)
$tBu_3SiNHM^{[19]}$ (M = Ti, V, Zr, Ta, W)	1.723(9)–1.758(4)	_	160.9(3)–166.6(5)	1.92(1)-1.94(1
$tBu_3SiNM_2^{[19]}$ (M = Ti, V, Zr, Ta, W)	1.719(14)–1.778(3)	_	164.1(2)–176.3(2)	1.93(3)-1.95(1

5001

FULL PAPER

H.-W. Lerner et al.

ent temperature. It crystallizes in the monoclinic space group $P2_1/n$. As depicted in Figure 2, the central core of $1b_2$ is a planar four-membered ring. The corners of this four-membered ring are alternately occupied by two Si and two N atoms [Si–N–Si (av) 88.49(9)°; N–Si–N 91.51(10)°]. The Si–N bond lengths of $1b_2$ are longer than those of the silan-imines 1a(tBu), 1a(Ph), $1b \cdot thf$, and $1b \cdot NMe_2Et$, and those of the silylamine 3(tBu) (see Tables 2 and 3).

Structure of the Benzophenone Imine Ph₂C=NSitBu₃

X-ray quality crystals of the benzophenone imine **8** were obtained by sublimation at $105 \,^{\circ}\text{C}/0.001 \,\text{mbar}$. It crystallizes in the triclinic space group $P\bar{1}$. It is interesting to note that the solid-state structure features three independent molecules in the asymmetric unit. As depicted in Figure 3, the C=N-Si skeleton deviates much more from linearity [C-N-Si 154.6(3)°, 154.9(3)°, and 153.5(3)°] than the Si=N-Si skeleton of 1a(tBu). The structure of **8** contains a C=N double bond [1.253(4), 1.263(5), and 1.261(5) Å] and, in comparison with the silanimine 1a(tBu), a longer Si-N single bond, as shown in Tables 2 and 3 $[1a(tBu): N-\text{Si}tBu_3 1.695(3) \,^{\circ}\text{A}; \,^{\circ}\text{8}: N-\text{Si}tBu_3 1.722(3), 1.720(3), and 1.721(4) Å; Figure 3].$

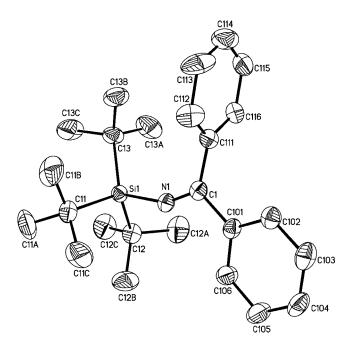


Figure 3. Thermal ellipsoid plot of one of three independent molecules in the asymmetric unit of $Ph_2C=NSitBu_3$ (8) showing the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and angles [°]: Si(1)–N(1) 1.722(3), Si(1)–C(11) 1.919(4), Si(1)–C(13) 1.922(4), Si(1)–C(12) 1.929(4), N(1)–C(1) 1.253(4), C(1)–C(101) 1.510(5), C(1)–C(111) 1.512(5); N(1)–Si(1)–C(11) 102.30(18), N(1)–Si(1)–C(13) 116.02(18), C(11)–Si(1)–C(13) 112.1(2), N(1)–Si(1)–C(12) 101.14(18), C(11)–Si(1)–C(12) 113.6(2), C(13)–Si(1)–C(12) 111.1(2), C(1)–N(1)–Si(1) 154.6(3), N(1)–C(1)–C(101) 119.8(4), N(1)–C(1)–C(111) 123.9(4), C(101)–C(1)–C(111) 116.2(4).

Structure of the Silylamine tBu₂SiClN(H)SitBu₃

The solid-state structure of the silylamine tBu₂SiClN(H)- $\operatorname{Si} t \operatorname{Bu}_3[3(t \operatorname{Bu})]$ (triclinic, $P\overline{1}$) shows two symmetrically independent molecules in the unit cell. As shown in Table 3, 3(tBu) possesses Si-N-Si angles of 164.2(5)° and 158.5(5)°, respectively, which can be compared to the values for 1a(tBu) [177.8(2)°], 1a(Ph) [172.95(18)°], $1b \cdot thf$ [161.0(6)° and 161.5(6)°], and **1b**·NMe₂Et [156.44(10)°]. The Si(Cl)–N bond [av. 1.694(7) Å] in 3(tBu) lies in the range of the N-SitBu₃ bond lengths for the supersilyl-substituted silanimines 1a(tBu), 1a(Ph), 1b·thf, and 1b·NMe₂Et but is shorter than the Si-N single bonds of the silanimine dimer 1b₂ and the benzophenone imine 8 (Table 3). On the other hand, the length of the N-SitBu₃ bond in 3(tBu) is similar to those found in the silanimine dimer $1b_2$ and the benzophenone imine 8. Both molecules of 3(tBu) show large thermal displacements, resulting in distorted structural parameters and a large difference density. The molecular structure of 3(tBu)shows that the N-H groups are extremely shielded by the tBu groups and are not involved in hydrogen bonding (Figure 4 and Table 4).

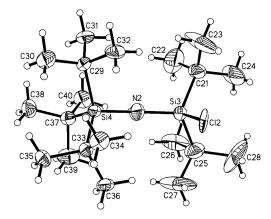


Figure 4. Thermal ellipsoid plot of one of the two independent molecules in the asymmetric unit of the silylamine $tBu_2SiCIN(H)$ $SitBu_3$ [3(tBu)]. The displacement ellipsoids are drawn at the 30% probability level. Selected bond lengths [Å] and angles [°]: Si(4)–N(2) 1.733(6), Si(4)–C(29) 1.918(7), Si(4)–C(33) 1.925(7), Si(4)–C(37) 1.935(8), Cl(2)–Si(3) 2.293(3) Si(3)–N(2) 1.679(7), Si(3)–C(25) 1.851(9), Si(3)–C(21) 1.908(9); Si(3)–N(2)–Si(4) 164.2(5), N(2)–Si(4)–C(29) 109.5(3), N(2)–Si(4)–C(33) 111.2(3), C(29)–Si(4)–C(33) 110.8(3), N(2)–Si(4)–C(37) 102.8(4), C(29)–Si(4)–C(37) 110.5(3), C(33)–Si(4)–C(37) 111.9(3), N(2)–Si(3)–C(25) 114.6(4), N(2)–Si(3)–C(21) 112.3(4), C(25)–Si(3)–C(21) 114.3(5), N(2)–Si(3)–Cl(2) 101.9(3), C(25)–Si(3)–Cl(2) 105.1(4), C(21)–Si(3)–Cl(2) 107.3(5).

Conclusions

In summary, we have shown that in contrast to $tBu_2SiN-(Li)SiXtBu_2$ (X = Cl, tBu), the silyl amide Me₂SiClN(Li)-SitBu₃ is unstable towards LiCl elimination, which means that the silanimine aminate $1b\cdot NMe_2Et$ can be synthesized in high yield from the reaction of Me₂SiClN(H)SitBu₃ with nBuLi in the presence of NMe_2Et . The silanimine adduct $1a(Cl)\cdot NMe_2Et$, which possesses the bulky tBu substituent

Table 4. Crystallographic data and further details of the structure determination of 1b·NMe₂Et, 1b₂, 3(tBu), and 8.

	1b·NMe ₂ Et	1b ₂	3 (<i>t</i> Bu)	8
Empirical formula	C ₁₈ H ₄₄ N ₂ Si ₂	C ₂₈ H ₆₆ N ₂ Si ₄	C ₂₀ H ₄₆ ClNSi ₂	C ₂₅ H ₃₇ NSi
Color	colorless	colorless	colorless	yellow
Formula weight	344.73	543.19	392.21	379.65
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	$P2_1/n$	$P2_1/n$	$P\bar{1}$	$P\bar{1}$
	10.431(2)	8.8953(4)	8.7999(18)	8.4950(10)
b [Å]	17.361(2)	25.2188(9)	15.954(7)	16.830(2)
c [Å]	12.664(2)	14.8096(7)	18.366(6)	26.592(3)
a [°]	90	90	94.16(3)	105.598(4)
β [°]	97.80(2)	90.632(4)	100.41(3)	97.122(4)
γ [°]	90	90	98.26(4)	101.089(4)
$V[\mathring{\mathbf{A}}^3], Z$	2272.1(6), 4	3322.0(2), 4	2496.8(14), 4	3530.9(7), 6
$D_{\rm calcd.}$ [Mg m ⁻³]	1.008	1.086	1.043	1.071
$\mu(\text{Mo-}K_{\alpha}) \text{ [mm}^{-1}]$	0.157	0.198	0.253	0.109
F(000)	776	1216	872	1248
Crystal size [mm ³]	$0.4 \times 0.4 \times 0.8$	$0.49 \times 0.29 \times 0.27$	$0.50 \times 0.19 \times 0.10$	$0.31 \times 0.14 \times 0.12$
Diffractometer	Stoe-IPDS-II	Stoe-IPDS-II	Siemens Smart CCD	Siemens Smart CCD
θ-range [°]	2.00-28.00	1.59-25.35	1.13-30.73	0.81-25.03
Index ranges	$-13 \le h \le 10$	$-10 \le h \le 10$	$-12 \le h \le 12$	$-10 \le h \le 10$
8	$0 \le k \le 21$	$-30 \le k \le 30$	$-22 \le k \le 22$	$-20 \le k \le 20$
	$-15 \le l \le 16$	$-17 \le l \le 17$	$-27 \le l \le 28$	$-31 \le l \le 31$
No. of reflections collected	6319	82992	31799	34387
No. of independent reflections	4619	6085	13016	12390
R(int)	0.0203	0.1395	0.0787	0.1345
Absorption correction	empirical	empirical	empirical	empirical
No. of data/restraints/parameter	4619/0/375	6085/0/307	13016/0/433	12390/0/730
Goodness of fit on F^2	1.063	1.104	1.772	0.958
Final R indices $[I > 2\sigma(I)]$, R_1 , wR_2	0.0351, 0.0940	0.0565, 0.1431	0.1502, 0.3527	0.0763, 0.1171
Largest diff. peak/hole [eÅ ⁻³]	0.276/-0.203	0.474/-0.371	2.045/-0.700	0.241/-0.271

on the unsaturated Si center, is accessible by treating the donor-free silanimine 1a(Cl) with NMe₂Et.

In contrast to the degradation reaction of the donor-free silanimines 1a(Cl), 1a(tBu), and 1a(Ph), a Stevens rearrangement takes place in the thermolysis of the silanimine amine adducts 1a(Cl)·NMe₂Et and 1b·NMe₂Et in dimethylethylamine to produce EtN(Me)CH₂SiMe₂N(H)SitBu₃ and EtN(Me)CH[Me₂SiN(H)SitBu₃]₂, and EtN(Me)CH₂Si $tBu_2N(H)SiCltBu_2$, respectively. The thermolysis **1b**·NMe₂Et in vacuo gives the silanimine dimer **1b₂** in 80% yield. In contrast to the reaction of 1a(tBu) with benzophenone, in which a stable silanimine adduct is formed, the silanimine amine complex 1b·NMe₂Et reacts with benzophenone to produce benzophenone imine 8, via oxaazasilacyclobutane 7, by a Wittig-like reaction. Due to the anisotropy effect the ²⁹Si NMR spectra of silanimines of the type R₂Si(1)=NSi(2)R₃ reveal upfield-shifted signals for both Si nuclei, therefore the linearity of the silanimine skeleton can be determined from the ²⁹Si shift of the Si(2) center.

Experimental Section

General Remarks: All experiments were carried out under dry nitrogen or argon with strict exclusion of air and moisture using standard Schlenk techniques. tBu₂Si=NSiCltBu₂,^[6] tBu₂SiFH,^[20] tBu₂-SiClH,[20] and Me2SiClN(H)SitBu3[8] were prepared according to literature procedures. All other starting materials were purchased from commercial sources and used without further purification. The solvents were distilled from sodium/benzophenone (benzene, toluene, tetrahydrofuran, diethyl ether) or Na/Pb alloy (pentane, hexane, heptane) prior to use. C₆D₆ was dried with molecular sieves and stored under dry nitrogen. The NMR spectra were recorded with a Jeol FX 90, a Jeol GSX 270, a Bruker AM 250, a Bruker DPX 250, or a Bruker Avance 400 spectrometer. The ²⁹Si NMR spectra were recorded using the INEPT pulse sequence with empirically optimized parameters for polarization transfer from the tBu substituents.

Synthesis of tBu₂SiClN(H)SitBu₃ [3(tBu)]: This compound was prepared according to a literature procedure. [4] X-ray quality crystals of 3(tBu) were grown from benzene at ambient temperature. Selected data: thermal decomposition of 3(tBu) occurs at 113 °C. ¹H NMR (C₆D₆, internal TMS): $\delta = 1.19$ (s, 18 H, tBu_2SiCl), 1.21 (s, 27 H, tBu_3Si) ppm. ¹³C{¹H} NMR (C₆D₆, internal TMS): $\delta = 23.6$ (3 C, CMe₃), 24.5 (2 C, CMe₃), 29.3 (6 C, CMe₃), 31.3 (9 C, CMe₃) ppm. $^{29}\text{Si}\{^{1}\text{H}\}$ NMR (C₆D₆, external TMS): $\delta = 8.4$ (SitBu₃), 16.0 (SiCltBu₃) ppm. C₂₀H₄₆ClNSi (392.22): calcd. C 61.25, H 11.82, N 3.57; found C 62.02, H 12.05, N 3.18. EI MS: m/z (%) 334 (100) $[M - tBu]^+$.

Synthesis of tBu₂Si(H)NH₂: tBu₂SiClH (10.05 g, 56.2 mmol) was added to 10 mL of liquid NH₃ at -60 °C and stirred for 6 h. After heating to room temperature the reaction product was distilled at 93 °C/100 Torr: Yield: 5.72 g (68%). ¹H NMR (C₆D₆, internal TMS): $\delta = 0.97$ (s, 18 H, tBu_2Si), 4.03 (br., HSi) ppm. ¹³C{¹H} NMR (C_6D_6 , internal TMS): $\delta = 18.9$ (CMe_3), 27.7 (CMe_3) ppm. ²⁹Si{¹H} NMR (C₆D₆, external TMS): $\delta = 7.1 \text{ ppm } (\text{SitBu}_2)$. C₈H₂₁NSi (159.35): calcd. C 60.30, H 13.28, N 8.78; found C 59.13, H 13.14, N 8.02. EI MS: m/z (%) 159 (13) [M]+, 102 (100) [M $tBu]^+$.

Synthesis of tBu₂Si(H)N(H)SiHtBu₂: A mixture of LiNH₂ (4.60 g, 200 mmol) and tBu₂SiFH (16.20 g, 100 mmol) in tetrahydrofuran (100 mL) was refluxed for 24 h. After addition of methanol

5003

FULL PAPER H.-W. Lerner et al.

(40 mL), all volatile compounds were removed in vacuo and the residue was extracted into 150 mL of pentane. After filtration, the solvent was removed in vacuo to give $tBu_2Si(H)N(H)SiHtBu_2$ as a colorless oil: Yield: 10.93 g (72%). B.p. 58 °C/0.01 mbar. ¹H NMR (C₆D₆, internal TMS): δ = 1.07 (s, 36 H, tBu_2Si), 4.23 (d, HSi) ppm. ¹³C{¹H} NMR (C₆D₆, internal TMS): δ = 20.6 (CMe_3), 28.5 (CMe_3) ppm. ²⁹Si{¹H} NMR (C_6D_6 , external TMS): δ = 7.0 ppm (Si tBu_2). C₁₆H₃₉NSi₂ (301.67): calcd. C 63.70, H 13.03, N 4.64; found C 63.04, H 12.95, N 4.72. EI MS: mlz (%) 301 (5) [M]⁺, 244 (100) [M – tBu]⁺.

Note: $tBu_2Si(H)N(H)SiHtBu_2$ can also be synthesized from $tBu_2-Si(H)NHLi$ and tBu_2SiFH in tetrahydrofuran by heating.

Synthesis of tBu_2 SiClN(H)SiCl tBu_2 [3(Cl)]: A mixture of N-chlorosuccinimide (23.79 g, 178.1 mmol) and tBu_2 Si(H)N(H)SiH tBu_2 (9.775 g, 32.4 mmol) in CCl₄ (75 mL) was refluxed for 48 h. After filtration, the solvent was removed in vacuo and the obtained solid reaction product was sublimed at 60 °C/10⁻⁴ Torr: Yield: 9.36 g (80%). 1 H NMR (C₆D₆, internal TMS): δ = 1.12 (s, 36 H, tBu_2 Si) ppm. 13 C{ 1 H} NMR (C₆D₆, internal TMS): δ = 23.4 (CMe₃), 28.1 (CMe₃) ppm. 29 Si{ 1 H} NMR (C₆D₆, external TMS): δ = 17.9 ppm (Si tBu_2). C₁₆H₃₇Cl₂NSi₂ (370.56): calcd. C 51.86, H 10.06, N 3.78; found C 50.74, H 9.89, N 3.42. EI MS: m/z (%) 369 (1) [M]⁺, 312 (100) [M – tBu]⁺.

Synthesis of the Silanimine Adduct $tBu_2Si=NSiCltBu_2\cdot NMe_2Et$ [1a(Cl)·NMe₂Et]: NMe₂Et (2 mL) was added to a solution of $tBu_2-Si=NSiCltBu_2$ (0.8 mmol) in 5 mL of benzene. After removing all volatile compounds in vacuo 1a(Cl)·NMe₂Et was obtained as a colorless solid. ¹H NMR (C₆D₆, internal TMS): δ = 1.18 (s, 18 H, tBu_2SiCl), 1.46 (s, 18 H, tBu_2Si), 0.63 (t, 3J = 7.2 Hz, 3 H, CH₃), 2.89 (q, 3J = 7.2 Hz, 2 H, NCH₂), 2.11 (s, 6 H, NMe₂) ppm. $^{13}C\{^1H\}$ NMR (C₆D₆, internal TMS): δ = 9.7 (CH₃), 25.3 (CMe₃), 25.7 (CMe₃), 30.3 (CMe₃), 31.8 (CMe₃), 44.8 (NCH₂), 52.9 (NMe₂) ppm. $^{29}Si\{^1H\}$ NMR (C₆D₆, external TMS): δ = -6.4 (SiCl tBu_2), -3.4 (Si tBu_2) ppm.

Synthesis of the Silanimine Adduct $Me_2Si=NSitBu_3\cdot NMe_2Et$ (1b·NMe₂Et): nBuLi (7.89 mmol) in hexane (5.1 mL) was added to a solution of $Me_2SiCIN(H)SitBu_3$ (2.43 g, 7.89 mmol) and 10 mL of NMe_2Et in 50 mL of Et_2O at -78 °C and stirred for 4 h. After heating to room temperature the volatile compounds were removed in vacuo and the solid reaction product was extracted into 30 mL of pentane. After filtration, single crystals of $1b\cdot NMe_2Et$ were obtained from the pentane filtrate at -25 °C. Yield: 1.47 g (54%). 1H NMR (C_6D_6 , internal TMS): $\delta = 0.12$ (s, 6 H Me₂Si), 0.32 (t, 3 H, CH₃), 1.45 (s, 27 H, tBu_3Si), 1.77 (s, 6 H, NMe₂), 2.50 (q, 2 H, NCH₂) ppm. $^{13}C\{^1H\}$ NMR (C_6D_6 , internal TMS): $\delta = 1.9$ (Me_2Si), 6.5 (CH_3), 24.5 (CMe_3), 32.1 (CMe_3), 41.5 (NCH_2), 51.0 (NMe_2) ppm. $^{29}Si\{^1H\}$ NMR (C_6D_6 , external TMS): $\delta = -8.9$ (Me_2Si), -10.3 ($SitBu_3$) ppm.

Synthesis of the Silanimine Dimer (Me₂SiNSitBu₃)₂ (1b₂): Compound 1b·NMe₂Et (0.608 g, 1.76 mmol) was heated at 120 °C in vacuo (0.01 mbar) for 4 h, then the obtained solid was extracted into 10 mL of benzene. 1b₂ was crystallized from this solution at ambient temperature. Yield: 0.382 g (80%). The NMR spectra of the mother liquid show the signals of 1b₂ and small signals which can be assigned to 5(Me,tBu) and 6(Me,tBu). Selected data for 1b₂: m.p. 268 °C. ¹H NMR (C₆D₆, internal TMS): δ = 0.79 (s, 12 H Me₂Si), 1.23 (s, 54 H, tBu₃Si) ppm. 13 C{¹H} NMR (C₆D₆, internal TMS): δ = 12.1 (Me₂Si), 23.8 (CMe₃), 32.6 (CMe₃) ppm. 29 Si{¹H} NMR (C₆D₆, external TMS): δ = 7.4 (Me₂Si), 4.6 (SitBu₃) ppm. C₂₈H₆₆N₂Si₄ (543.18): calcd. C 61.91, H 12.95, N 5.16; found C 61.28, H 12.62, N 5.09.

Thermolysis of the Silanimine Adduct Me₂SiNSitBu₃·NMe₂Et (1b·NMe₂Et): A solution of 1b·NMe₂Et (0.168 g, 0.487 mmol) in 0.8 mL of NMe₂Et was heated at 135 °C for 30 h. The NMR (¹H, ¹³C, ²⁹Si) spectra showed the signals of 5(Me,tBu) (80%) and 6(Me,tBu) (20%). After removing all volatile compounds at room temp. and 0.001 mbar, colorless 5(Me,tBu) was distilled at 70 °C/0.001 mbar from the obtained mixture. Analytically pure 6(Me,tBu) remained as the distillation residue.

5(Me,tBu): ¹H NMR (C_6D_6 , internal TMS): $\delta = 0.26$ (s, 6 H Me₂Si), 0.96 (t, ${}^1J = 7.1$ Hz, 3 H, CH₃), 1.20 (s, 27 H, tBu_3Si), 1.74 (s, 2 H, SiCH₂N), 2.15 (s, 3 H, NCH₃), 2.30 (q, ${}^1J = 7.1$ Hz, 2 H, NCH₂) ppm. ¹³C{¹H} NMR (C_6D_6 , internal TMS): $\delta = 3.64$ (Me₂Si), 13.3 (CH₃), 23.0 (*C*Me₃), 30.7 (*CMe*₃), 45.4 (NCH₃), 50.2 (NCH₂Si), 55.7 (NCH₂) ppm. ²⁹Si{¹H} NMR (C_6D_6 , external TMS): $\delta = -3.7$ (Me₂Si), 6.4 (SitBu₃) ppm. $C_{18}H_{44}N_2Si_2$ (344.74): calcd. C 62.71, H 12.87, N 8.13; found C 63.01, H 12.14, N 8.52. EI MS: m/z (%) 344 (7) [M]⁺, 287 (100) [M – tBu]⁺.

6(Me,tBu): M.p. 116 °C. ¹H NMR (C₆D₆, internal TMS): δ = 0.41 (s, 6 H MeSi), 0.44 (s, 6 H MeSi), 1.06 (t, ${}^{1}J$ = 7.1 Hz, 3 H, CH₃), 1.20 (s, 54 H, tBu₃Si), 1.76 (s, 1 H, Si₂CHN), 2.49 (s, 3 H, NCH₃), 2.81 (q, ${}^{1}J$ = 7.1 Hz, 2 H, NCH₂) ppm. 13 C{ 1 H} NMR (C₆D₆, internal TMS): δ = 6.1 (MeSi), 6.2 (MeSi), 14.7 (CH₃), 23.0 (CMe₃), 30.9 (CMe₃), 44.0 (NCH₃), 53.6 (NCHSi₂), 54.0 (NCH₂) ppm. 29 Si{ 1 H} NMR (C₆D₆, external TMS): δ = -1.6 (Me₂Si), 6.7 (SitBu₃) ppm. C₃₂H₇₇N₃Si₄ (616.33): calcd. C 62.36, H 12.60, N 6.80; found C 62.00, H 12.83, N 6.65. EI MS: m/z (%) 615 (3) [M]⁺, 558 (100) [M – tBu]⁺.

Remark: A solution of $1b \cdot NMe_2Et$ (0.025 g, 0.073 mmol), 0.1 mL of NMe_2Et and 1 mL of C_6D_6 was heated at 120 °C for 24 h. The NMR (1H , ^{13}C , ^{29}Si) spectra showed the signals of $5(Me_7Bu)$ (10%) and $6(Me_7Bu)$ (90%).

Thermolysis of the Silanimine Adduct $tBu_2Si=NSiCltBu_2:NMe_2Et$ [1a(Cl)·NMe₂Et]: A solution of 1a(Cl)·NMe₂Et (0.5 mmol) in 2 mL of NMe₂Et was stored for 2 weeks at ambient temperature. The NMR (1 H, 13 C, 29 Si) spectra showed only the signals of 5(tBu,Cl). 1 H NMR (C₆D₆, internal TMS): δ = 0.96 (t, 1 J = 7.33 Hz, 3 H, CH₃), 1.14 (s, 18 H, tBu_2 Si), 1.23 (s, 18 H, tBu_2 Si), 2.06 (s, 3 H, NCH₃), 2.15 (q, 1 J = 7.33 Hz, 2 H, NCH₂), 2.35 (s, 2 H, SiCH₂N) ppm. 13 C{ 1 H} NMR (C₆D₆, internal TMS): δ = 13.1 (CH₃), 23.3 (CMe₃), 23.6 (CMe₃), 28.7 (CMe₃), 29.5 (CMe₃), 39.2 (NCH₂Si), 45.1 (NCH₃), 53.7 (NCH₂) ppm. 29 Si{ 1 H} NMR (C₆D₆, external TMS): δ = 17.5 (tBu_2 SiCl), 0.6 (Si tBu_2) ppm. EI MS: mlz (%) 334 (43) [M – tBu]⁺, 166 (100) [Me₂SiNHSiClMe₂]⁺.

Note: A solution of $1a(Cl)\cdot NMe_2Et$ (0.134 g, 0.329 mmol) in 0.6 mL of C_6D_6 was stored at ambient temperature for a week. The NMR (1H , ^{13}C , ^{29}Si) spectra showed the signals of 5(tBu,Cl).

Reaction of the Silanimine Adduct Me₂Si=NSitBu₃·NMe₂Et (1b·NMe₂Et) with Ph₂CO: A solution of Ph₂C=O (0.275 g, 1.50 mmol) in 10 mL of Et₂O was added to a solution of 1b·NMe₂Et (0.520 g, 1.51 mmol) in 10 mL of Et₂O at -78 °C. The NMR (1 H, 13 C, 29 Si) spectra showed the signals of Ph₂C=NSitBu₃ (8) and other compounds containing Me₂SiO groups. [8] After removing all volatile compounds in vacuo (0.001 mbar), single crystals of 8 were obtained by sublimation at 105 °C/0.001 mbar. Yield: 0.301 g (53%). M.p. 98 °C. 1 H NMR (C₆D₆, internal TMS): δ = 1.18 (s, 27 H, tBu₃Si), 7.08 (m, 6 H, olp-Ph), 7.387 (m, 4 H, m-Ph) ppm. 13 C{ 1 H} NMR (C₆D₆, internal TMS): δ = 23.7 (CMe₃), 30.9 (CMe₃), 128.26 (mlo-Ph), 128.29 (mlo-Ph), 129.3 (p-Ph), 143.3 (p-Ph), 170.3 (C=N) ppm. 29 Si{ 1 H} NMR (C₆D₆, external TMS): δ = -4.9 ppm (SitBu₃). C₁₆H₃₉NSi₂ (379.66): calcd. C 79.01, H 9.81, N 3.69; found C 78.54, H 9.65, N 3.72. EI MS: mlz (%) 322 (100)

 $[M - tBu]^+$. IR: $v_{C=N} = 1692 \text{ cm}^{-1}$. UV/Vis: $\lambda_{max} = 401 \text{ nm}$ ($\varepsilon_{401} = 7.48 \text{ m}^{-1} \text{ cm}^{-1}$).

Lithiation of $tBu_2SiClN(H)SiXtBu_2$ (X = Cl, tBu) [3(Cl), 3(tBu)]: A solution of RLi [X = Cl(thf): RLi = 3.16 mmol of nBuLi in 2 mL of hexane and 10 mL of thf; X = Cl(thf): RLi = 1.93 mmol of MeLi in 3 mL of Et₂O; X = Cl(Et₂O): RLi = 1.05 mmol of nBuLi in 0.7 mL of hexane and 10 mL of Et₂O] was added to a solution of $tBu_2SiClN(H)SiXtBu_2$ (in 10 mL of thf, X = Cl, 1.162 g, 3.14 mmol; in 6 mL of thf, X = tBu, 0.756 g, 1.93 mmol; in 10 mL Et₂O, X = Cl, 0.385 g, 1.05 mmol) at -78 °C. After removing the solvent, the silylated amides $tBu_2SiClN(Li)SiXtBu_2$ (X = Cl, tBu) were obtained as colorless solids. The NMR spectra of the reaction solution showed only the signals of the silylated amides $tBu_2SiClN(Li)SiXtBu_2$ (X = Cl, tBu).

*t*Bu₂SiClNLi(thf)SiCl*t*Bu₂: ¹H NMR (C₆D₆, internal TMS): δ = 1.32 (m, 4 H, CH₂), 1.36 (s, 36 H, *t*Bu₂Si), 3.47 (m, 4 H OCH₂). ¹³C{¹H} NMR (C₆D₆, internal TMS): δ = 24.8 (*C*Me₃), 25.2 (CH₂), 28.9 (C*M*e₃), 68.7 (OCH₂) ppm. ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ = 4.8 ppm (Si*t*Bu₂).

tBu₂SiClNLi(thf)SitBu₃: ¹H NMR (C₆D₆, internal TMS): δ = 1.17 (m, 4 H, CH₂), 1.32 (s, 27 H, tBu₃Si), 1.44 (s, 18 H, tBu₂Si), 3.35 (s, 8 H OCH₂) ppm.

*t*Bu₂SiCl-NLi(Et₂O)SiCl*t*Bu₂: ¹H NMR (C₆D₆, internal TMS): δ = 0.904 (t, 6 H, CH₃), 1.315 (s, 36 H, *t*Bu₂Si), 3.181 (q, 4 H OCH₂) ppm. ¹³C{¹H} NMR (C₆D₆, internal TMS): δ = 14.8 (CH₃), 24.8 (*C*Me₃), 29.0 (*CMe*₃), 65.8 (OCH₂) ppm. ²⁹Si{¹H} NMR (C₆D₆, external TMS): δ = 5.5 ppm (Si*t*Bu₂).

Note: Treatment of one equivalent of $tBu_2SiClN(Li)SiXtBu_2$ (X = Cl, tBu) with one equivalent of MeOH leads quantitatively to the formation of 3(Cl) and 3(tBu).

X-ray Crystallographic Study: Data collection was performed with either a Stoe-IPDS-II diffractometer or a Siemens CCD three-circle diffractometer. Empirical absorption correction was performed with MULABS^[21] and SADABS,^[22] structure solution by direct methods,^[23] and structure refinement by full-matrix least-squares on F^2 with SHELXL-97.^[24] Hydrogen atoms were placed at ideal positions and refined with fixed isotropic displacement parameters using a riding model.

CCDC-602102 (for $1b\cdot NMe_2Et$), -602101 (for $1b_2$), -609530 [for 3(tBu)], and -609686 (for 8) contain the supplementary crystallographic data for this paper. These data can be obtained free of

charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

- P. von Ragué Schleyer, P. D. Stout, J. Chem. Soc., Chem. Commun. 1986, 1373–1374.
- [2] N. Wiberg, K. Schurz, G. Reber, G. Müller, J. Chem. Soc., Chem. Commun. 1986, 591–592.
- [3] H.-W. Lerner, S. Scholz, M. Bolte, Z. Anorg. Allg. Chem. 2001, 627, 1638–1642.
- [4] P. Karampatses, PhD Thesis, München, Germany, 1985.
- [5] M. Hesse, U. Klingebiel, Angew. Chem. Int. Ed. Engl. 1986, 25, 649–650.
- [6] H.-W. Lerner, N. Wiberg, J. W. Bats, J. Organomet. Chem. 2005, 690, 3898–3907.
- [7] H.-W. Lerner, N. Wiberg, K. Polborn, Z. Naturforsch., Teil B 2002, 57, 1199–1206.
- [8] N. Wiberg, K. Schurz, J. Organomet. Chem. 1988, 341, 145– 163.
- [9] N. Wiberg, K. Schurz, Chem. Ber. 1988, 121, 581–589.
- [10] H.-W. Lerner, PhD Thesis, München, Germany, 1994.
- [11] J. Niesmann, U. Klingebiel, M. Schäfer, R. Boese, Organometallics 1998, 17, 947–953.
- [12] N. Wiberg, K. Schurz, G. Müller, J. Riese, Angew. Chem. Int. Ed. Engl. 1988, 27, 935–936.
- [13] N. Wiberg, K.-S. Joo, K. Polborn, *Chem. Ber.* **1993**, *126*, 67–69
- [14] N. Wiberg, E. Kuhnel, K. Schurz, H. Borrmann, A. Simon, Z. Naturforsch., Teil B 1988, 43, 1075–1086.
- [15] M. Weidenbruch, B. Brand-Roth, S. Pohl, W. Saak, J. Organomet. Chem. 1989, 379, 217–222.
- [16] M. Ichinohe, H. Fukui, A. Sekiguchi, *Chem. Lett.* **2000**, *126*, 600
- [17] H.-W. Lerner, N. Wiberg, M. Bolte, H. Nöth, J. Knizek, Z. Naturforsch., Teil B 2002, 57, 177–182.
- [18] N. Wiberg, P. Karampatses, E. Kuhnel, M. Veith, V. Huch, Z. Anorg. Allg. Chem. 1988, 562, 91–101.
- [19] Cambridge Structural Database (CSD, version 5.27, updated May 2006): F. H. Allen, Acta Crystallogr. Sect. B 2002, 58, 380.
- [20] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 1997, 542, 1–18.
- [21] R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33.
- [22] G. M. Sheldrick, SADABS, University of Göttingen, Germany, 2000
- [23] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
- [24] G. M. Sheldrick, SHELXL-97, A Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. Received: June 29, 2006

Published Online: October 31, 2006